skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lawrie, Craig"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We provide a new extension to the geometric construction of 6d (1, 0) SCFTs that encap- sulates Higgs branch structures with identical global symmetry but different spectra. In particular, we find that there exist distinct 6d (1, 0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (so4k,so4k) conformal matter; we pro- pose a method to predict at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus compactifications of these 6d (1, 0) SCFTs give rise to 4d N = 2 SCFTs of class S and the Higgs branch of such 4d theories are cap- tured via the Hall–Littlewood index. We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension from their Hall–Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond the very even nilpotent Higgsing of (so4k,so4k) conformal matter, and hence should be understood for more general classes of 6d (1, 0) SCFTs. 
    more » « less